Tensores são entidades geométricas introduzidas na matemática e na física para generalizar a noção de escalares, vetores e matrizes. Assim como tais entidades, um tensor é uma forma de representação associada a um conjunto de operações tais como a soma e o produto. Um exemplo mais sofisticado é o tensor tensão de Cauchy T, que toma uma direção v como entrada e produz a tensão T(v) sobre a superfície normal a v como saída, expressando assim uma relação entre estes dois vetores, mostrada na figura (direita). Muitas grandezas físicas são melhor representadas como a correspondência entre um conjunto de vetores e outra. Por exemplo, a Tensão (mecânica) ou estresse (figura 1) toma uma direção (vetor) como entrada e produz a tensão sobre a superfície normal a este vetor como saída e, assim, expressa a relação entre estes dois vetores. É possível obter um tensor examinando o que ele faz para uma coordenada base. A quantidade resultante é então organizada como uma matriz multi-dimensional. A independência de coordenadas de um tensor toma a forma da transformação que relaciona a matriz de um sistema de coordenadas para o outro. De um modo mais formal, tensores são a generalização dos conceitos de vetor, funcional linear, transformação linear, forma bilinear, e, de modo geral, aplicações n-lineares que levam n1 vetores a n2 vetores. Tensores são essenciais em diversas áreas da física, como mecânica clássica, electromagnetismo e a teoria da Relatividade. Exemplos: Mecânico - Acima o tensor da Tensão (mecânica) está representada em apenas duas dimensões. Mais corretamente (figura 1) a tensão é modelada pelo tensor de Cauchy com nove componentes, três para cada dimensão. O tensor das tensões de Cauchy é usado para análise de tensões dos corpos materiais experimentando pequenas deformações. Elétrico - Na figura abaixo, uma carga elétrica produz um campo escalar de potenciais elétricos, um campo vetorial (campo elétrico) e um campo tensorial de estresses. Campo tensorial é uma generalização de campo vetorial, em que, a cada ponto, temos não um vetor mas um tensor. Eletromagnético - Uma carga elétrica também gera um campo de tensores eletromagnéticos, conceito explorado na teoria da relatividade. Neste caso o tensor resulta da interação em cada ponto do campo elétrico e magnético. O tensor eletromagnético é dado por: F μ ν = [ 0 − E x / c − E y / c − E z / c E x / c 0 − B z B y E y / c B z 0 − B x E z / c − B y B x 0 ] {\displaystyle F^{\mu \nu }={\begin{bmatrix}0&-E_{x}/c&-E_{y}/c&-E_{z}/c\\E_{x}/c&0&-B_{z}&B_{y}\\E_{y}/c&B_{z}&0&-B_{x}\\E_{z}/c&-B_{y}&B_{x}&0\end{bmatrix}}} . Gravidade - O mesmo se aplicaria a um corpo e seu Campo gravitacional. Neste caso teríamos um campo de tensores métricos descrito nas Equações de campo de Einstein. O tensor métrico em um espaço de Minkowski é: g μ ν = ( 1 0 0 0 0 − 1 0 0 0 0 − 1 0 0 0 0 − 1 ) {\displaystyle g_{\mu \nu }={\begin{pmatrix}1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&-1\end{pmatrix}}} .
Developed by StudentB